Citation:
Mech Dev. 2004 Jul;121(7-8):945-58
Abstract:
Numerous studies, mostly performed on mammalian cell cultures, have implicated the Gadd45 family of small acidic proteins in cell cycle control (arrest and/or engagement in the apoptotic pathway). We report here the cloning, detailled expression pattern and functional characterisation in embryonic development of Ol-Gadd45gamma, the Oryzias latipes ortholog of mammalian Gadd45gamma. Its expression pattern, notably in the developing brain (optic tectum) strongly suggests that it is involved in cell cycle exit. Gain-of-function experiments (through mRNA injection) slowed down early development, and produced embryos clearly reduced in size, while morpholino knockdowns resulted in small embryos over-sensitive to DNA damage (UV irradiation). We further demonstrated that, following Ol-Gadd45gamma overexpression, cells are proliferation-arrested before both G1/S and G2/M cell cycle checkpoints, while in the MO-Ol-Gadd45 loss-of-function experiments cells are engaged in apoptosis rather than prevented from proliferating. These results show that Ol-Gadd45gamma is likely to play an important role in coordinating cell fate decisions during neurogenesis; they also demonstrate that the medakafish is a promising model to analyse in vivo the developmental control of the cell cycle.
Organism or Cell Type:
medaka
Delivery Method:
Microinjection