Citation:
Hum Mol Genet. 2004 Oct 15;13(20):2409-20.
Abstract:
Alternative RNA splicing is now known to be pervasive throughout the genome and a target of human disease. We evaluated if targeting intronic splicing regulatory sequences with antisense oligonucleotides could be used to correct aberrant exon skipping. As a model we targeted the intronic silencing sequence (ISS) elements flanking the alternatively spliced alpha-exon of the endogenous FGFR1 gene, which is aberrantly skipped in human glioblastoma. Antisense morpholino oligonucleotides targeting either upstream or downstream ISS elements increased alpha-exon inclusion from 10% up to 70% in vivo. The effect was dose dependent, sequence specific and reproducible in several human cell lines but did not necessarily correlate with blocking of protein association in vitro. Simultaneous targeting of the ISS elements had no additive effect, suggesting that splicing regulation occurred through a shared mechanism. Broad applicability of this approach was demonstrated by similar targeting of the ISS elements of the human hnRNPA1 gene. The correction of FGFR1 gene splicing to greater than 90% alpha-exon inclusion in glioblastoma cells had no discernable effect on cell growth in culture, but was associated with an increase in unstimulated caspase-3 and -7 activity. The ability to manipulate endogenously expressed mRNA variants allows exploration of their functional relevance under normal and diseased physiological states.
Organism or Cell Type:
cell culture: human SNB-19 and U251 glioblastoma cell lines, HeLa, PC3, TPC1 and Panc 28
Delivery Method:
scrape loading and free uptake