You are here

Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome

Authors: 
Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, Jolley JD, Cvejic A, Kostadima M, Bertone P, Breuning MH, Debili N, Deloukas P, Favier R, Fiedler J, Hobbs CM, Huang N, Hurles ME, Kiddle G, Krapels I, Nurden P, Ruivenkamp CA, Sambrook JG, Smith K, Stemple DL, Strauss G, Thys C, van Geet C, Newbury-Ecob R, Ouwehand WH, Ghevaert C
Citation: 
Nat Genet. 2012 Feb 26;44(4):435-9, S1-2. doi: 10.1038/ng.1083
Abstract: 
The exon-junction complex (EJC) performs essential RNA processing tasks1-5. Here, we describe the first human disorder, Thrombocytopenia with Absent Radii6 (TAR), caused by deficiency in one of the four EJC subunits. A compound inheritance mechanism of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this mechanism explained 53 of 55 cases (P<5×10−228) with the rare congenital malformation syndrome. Fifty-one of those 53 carried a previously associated7 submicroscopic deletion of 1q21.1; two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in reduction of RBM8A transcription in vitro and that Y14 expression is reduced in platelets from TAR cases. Our data implicate Y14 insufficiency, and presumably EJC defect, as the cause of TAR syndrome.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection