You are here

Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2

Authors: 
Colozza G, Lee H, Merenda A, Wu SS, Català-Bordes A, Radaszkiewicz TW, Jordens I, Lee JH, Bamford AD, Farnhammer F, Low TY, Maurice MM, Bryja V, Kim J, Koo BK
Citation: 
Sci Adv. 2023 Nov 24;9(47):eadh9673. doi: 10.1126/sciadv.adh9673. Epub 2023 Nov 24
Abstract: 
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin–dependent (canonical) or –independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Epub: 
Not Epub
Organism or Cell Type: 
Xenopus
Delivery Method: 
microinjection