Citation:
J Exp Biol. 2016 Dec 15;219(Pt 24):3988-3995. doi: 10.1242/jeb.148700. Epub 2016 Oct 24
Abstract:
The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg PO2) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca2+ levels and Ca2+ uptake. Ca2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca2+ channel (ecac), but not plasma membrane Ca2+-ATPase (pmca2) or Na+/Ca2+-exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca2+ balance during hypoxia, the results demonstrated that the reduction of Ca2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression.
Epub:
Not Epub
Link to Publication:
https://journals.biologists.com/jeb/article/219/24/3988/16558/Inhibition-of-calcium-uptake-during-hypoxia-in
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection