You are here

A 127 kb truncating deletion of PGRMC1 is a novel cause of X-linked isolated paediatric cataract

Authors: 
Jones JL, Corbett MA, Yeaman E, Zhao D, Gecz J, Gasperini RJ, Charlesworth JC, Mackey DA, Elder JE, Craig JE, Burdon KP
Citation: 
Eur J Hum Genet. 2021;[Epub] doi:10.1038/s41431-021-00889-8
Abstract: 
Inherited paediatric cataract is a rare Mendelian disease that results in visual impairment or blindness due to a clouding of the eye’s crystalline lens. Here we report an Australian family with isolated paediatric cataract, which we had previously mapped to Xq24. Linkage at Xq24–25 (LOD = 2.53) was confirmed, and the region refined with a denser marker map. In addition, two autosomal regions with suggestive evidence of linkage were observed. A segregating 127 kb deletion (chrX:g.118373226_118500408del) in the Xq24–25 linkage region was identified from whole-genome sequencing data. This deletion completely removed a commonly deleted long non-coding RNA gene LOC101928336 and truncated the protein coding progesterone receptor membrane component 1 (PGRMC1) gene following exon 1. A literature search revealed a report of two unrelated males with non-syndromic intellectual disability, as well as congenital cataract, who had contiguous gene deletions that accounted for their intellectual disability but also disrupted the PGRMC1 gene. A morpholino-induced pgrmc1 knockdown in a zebrafish model produced significant cataract formation, supporting a role for PGRMC1 in lens development and cataract formation. We hypothesise that the loss of PGRMC1 causes cataract through disrupted PGRMC1-CYP51A1 protein–protein interactions and altered cholesterol biosynthesis. The cause of paediatric cataract in this family is the truncating deletion of PGRMC1, which we report as a novel cataract gene.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection