You are here

Transcriptome profile of the zebrafish atrioventricular canal reveals molecular signatures of pacemaker and valve mesenchyme

Authors: 
Abu NK, Migdał M, Quinn TA, Poon K-L, Łapinski M, Sulej A, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C
Citation: 
bioRxiv. 2021;[preprint] doi:10.1101/2021.01.27.428386
Abstract: 
The atrioventricular canal (AVC) is an essential feature of the heart, which separates the atrium from the ventricle. During heart morphogenesis, it is a hub of molecular processes necessary for distinguishing heart regions; most importantly, for the formation of the AV conduction system and cardiac valves. To better understand the molecular processes underlying AVC development and function, we utilized the transgenic zebrafish line sqet31Et with EGFP expression in the AVC region to isolate this cell population by FACS and profiled its transcriptome by RNA-seq at 48 and 72 hours post fertilization (hpf). Compared to the rest of the heart, the AVC is enriched for the expression of molecular markers associated with mammalian AVC and AV node, including cx36.7 and cx45 which encode connexins forming low conductance gap junctions. Using the transgenic line Tg(myl7:mermaid) encoding the voltage-sensitive fluorescent protein, we showed that loss of function of Isl1 abolished the pacemaker-containing sinoatrial ring (SAR) and resulted in an erratic spread of excitation pattern from the SAR to AVC, indicating the dysfunction of the primary pacemaker. Concurrently, ectopic excitation in the AVC region was observed, suggesting that the zebrafish AVC possesses inherent automaticity although insufficient to replace the primary pacemaking activity of the SAR. Comparisons between the SAR and AVC transcriptomes revealed partially overlapping expression profiles of various ion channels and gap junction proteins which reflects their diversified functions. Lastly, we observed dynamic expression of epithelial-to-mesenchymal transition markers, as well as components of TGF-β, Notch, and Wnt signaling pathways, which have been implicated in the formation of AVC conduction and cardiac valves. Our results uncovered the molecular hallmarks of the developing AVC region and demonstrated its role in the structural and electrophysiological separation between the atrium and ventricle.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection