Citation:
bioRxiv. 2020;[preprint] doi:10.1101/602912
Abstract:
Hematopoietic stem and progenitor cells (HSPCs) that establish and maintain the blood system in adult vertebrates arise from the transdifferentiation of hemogenic endothelial cells (hemECs) during embryogenesis. This endothelial-to-hematopoietic transition (EHT) is tightly regulated, but the mechanisms are poorly understood. Here, we show that microRNA (miR)-223-mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. Single cell RNA-sequencing revealed that miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid/myeloid lineages by suppressing the expression of mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in N-linked protein glycosylation. High-throughput glycomics of ECs lacking miR-223 showed a decrease of high mannose versus sialylated complex/hybrid sugars on N-glycoproteins involved in EHT such as the metalloprotease Adam10. Endothelial-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied the aberrant HSPC production of miR-223 mutants. Thus, the N-glycome plays a previously unappreciated role as an intrinsic regulator of EHT, with specific mannose and sialic acid modifications serving as key endothelial determinants of their hematopoietic fate.
Epub:
Not Epub
Link to Publication:
https://www.biorxiv.org/content/10.1101/602912v2
Organism or Cell Type:
zebrafish