You are here

Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish

Authors: 
Katikaneni A, Jelcic M, Gerlach GF, Ma Y, Overholtzer M, Niethammer P
Citation: 
Nat Cell Biol. 2020 Sep;22(9):1049-1055. doi: 10.1038/s41556-020-0564-2. Epub 2020 Aug 31
Abstract: 
Rapid wound detection by distant leukocytes is essential for antimicrobial defence and post-infection survival1. The reactive oxygen species hydrogen peroxide and the polyunsaturated fatty acid arachidonic acid are among the earliest known mediators of this process2-4. It is unknown whether or how these highly conserved cues collaborate to achieve wound detection over distances of several hundreds of micrometres within a few minutes. To investigate this, we locally applied arachidonic acid and skin-permeable peroxide by micropipette perfusion to unwounded zebrafish tail fins. As in wounds, arachidonic acid rapidly attracted leukocytes through dual oxidase (Duox) and 5-lipoxygenase (Alox5a). Peroxide promoted chemotaxis to arachidonic acid without being chemotactic on its own. Intravital biosensor imaging showed that wound peroxide and arachidonic acid converged on half-millimetre-long lipid peroxidation gradients that promoted leukocyte attraction. Our data suggest that lipid peroxidation functions as a spatial redox relay that enables long-range detection of early wound cues by immune cells, outlining a beneficial role for this otherwise toxic process. AUTHOR CORRECTION: https://www.nature.com/articles/s41556-021-00683-0
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish