Citation:
Fish Shellfish Immun. 2020;[Epub ahead of print] doi:10.1016/j.fsi.2020.07.013
Abstract:
The complement component 3 of the lamprey, a jawless vertebrate, functions as an opsonin during the phagocytosis of rabbit red cells. Furthermore, lamprey C3 may be activated and cleaved into C3b, which is attached to the surface of target cells in the cytolytic process. However, the mechanism mediating the biological function of C3 in the lamprey is unknown. To our knowledge, this study is the first to show that variable lymphocyte receptors (VLRs) expression were significantly affected by complement C3 knockdown morphants in Lampetra morii. We identified the C3 gene in the lamprey genome based on its orthologs, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. Additionally, we determined the optimal infection concentration of Aeromonas hydrophila to perform immune stimulation experiments in the lamprey larvae. The quantitative real-time polymerase chain reaction and immunofluorescence analyses revealed that the expression of Lampetra morii C3 (lmC3) was significantly upregulated in the larvae infected with 107 CFU/mL of A. hydrophila. The lmC3 morphants (lmC3 MO) of lamprey larvae were generated by morpholino-mediated knockdown. The lmC3 MO larvae were highly susceptible to A. hydrophila infection, which indicated that lmC3 is critical in lamprey immune response. The expression of a selected panel of orthologous genes was comparatively analyzed in the infected wild type, infected lmC3 MO, infected control MO, uninfected wild type and uninfected lmC3 MO one-month-old ammocoete larvae. The knockdown of lmC3 strongly affected the expression of VLRA+/VLRB+/VLRC+-associated genes, which was also confirmed by immunohistochemical analysis. Thus, VLR expression were significantly affected by complement C3 knockdown morphants in Lampetra morii.
Epub:
Yes
Link to Publication:
https://www.sciencedirect.com/science/article/abs/pii/S1050464820304976
Organism or Cell Type:
Lampetra morii (lamprey)
Delivery Method:
microinjection