Citation:
bioRxiv. 2019:[preprint] doi:10.1101/2019.12.27.889378
Abstract:
Calcium signaling is an important early step in wound healing, yet how these early signals promote regeneration remains unclear. Peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes, catalyze citrullination, a post-translational modification that alters protein function and has been implicated in autoimmune diseases. We generated a mutation in the single zebrafish ancestral pad gene, padi2, resulting in a loss of detectable calcium-dependent citrullination. The padi2 mutants exhibit impaired resolution of inflammation and regeneration after caudal fin transection. Further, we identified a new subpopulation of cells displaying citrullinated histones within the notochord bead following tissue injury. Citrullination of histones in this region was absent and wound-induced proliferation was perturbed in Padi2-deficient larvae. Taken together, our results show that Padi2 is required for the citrullination of histones within a group of cells in the notochord bead, and for promoting wound-induced proliferation required for efficient regeneration. These findings identify Padi2 as a potential intermediary between early calcium signaling and subsequent tissue regeneration.
Epub:
Not Epub
Link to Publication:
https://www.biorxiv.org/content/10.1101/2019.12.27.889378v1
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection