Citation:
Dev Dyn. 2019 Jul 10. doi: 10.1002/dvdy.84. [Epub ahead of print]
Abstract:
BACKGROUND: The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/β-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role.
RESULTS: To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance.
CONCLUSIONS: Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.
Epub:
Yes
Link to Publication:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.84
Organism or Cell Type:
zebrafish