You are here

Effect of Tim23 Knockdown in vivo on Mitochondrial Protein Import and Retrograde Signaling to the UPRmt in Muscle

Authors: 
Oliveira AN, Hood DA
Citation: 
Am J Physiol Cell Physiol. 2018 Jun 27. doi: 10.1152/ajpcell.00275.2017. [Epub ahead of print]
Abstract: 
The mitochondrial unfolded protein response (UPRmt) is a protein quality control mechanism that strives to achieve proteostasis in the face of misfolded proteins. Due to the reliance of mitochondria on both the nuclear and mitochondrial genomes, a perturbation of the coordination of these genomes results in a mito-nuclear imbalance in which holoenzymes are unable to assume mature stoichiometry and thereby activates the UPRmt. Thus, we sought to perturb this genomic coordination by using a systemic anti-sense oligonucleotide (in-vivo Morpholino) targeted to Tim23, the major channel of the inner membrane. This resulted in a 40% reduction in Tim23 protein content, a 32% decrease in matrix-destined protein import, and a trend to elevate ROS emission under maximal respiration conditions. This import defect activated the CHOP-branch of the UPRmt, as evident from increases in ClpP and cpn10, but not the ATF5 arm. Thus, in the face of proteotoxic stress, CHOP and ATF5 could be activated independently to regain proteostasis. Our second aim was to investigate the role of proteolytically-derived peptides in mediating retrograde signaling. Peptides released from the mitochondrion following basal proteolysis were isolated and incubated with import reactions. Dose- and time-dependent effect of peptides on protein import was observed. Our data suggest that mitochondrial proteolytic byproducts exert an inhibitory effect on protein import, possibly to reduce excessive protein import as a potential negative feedback mechanism. The inhibition of import into the organelle also serves a retrograde function, possibly via ROS emission, to modify nuclear gene expression and ultimately improve folding capacity.
Epub: 
Yes
Delivery Method: 
Vivo-Morpholino