You are here

Zebrafish Znfl1s control the expression of hoxb1b in the posterior neuroectoderm by acting upstream of pou5f3 and sall4

Authors: 
Dong X, Li J, He L, Gu C, Jia W, Yue Y, Li J, Zhang Q, Chu L, Zhao Q
Citation: 
J Biol Chem. 2017 Jun 16. pii: jbc.M117.777094. doi: 10.1074/jbc.M117.777094. [Epub ahead of print]
Abstract: 
Transcription factors play crucial roles in patterning posterior neuroectoderm. Previously, zinc finger transcription factor znfl1 was reported to express in the posterior neuroectoderm of zebrafish embryos. However, its roles remain unknown. Here, we report that there are 13 copies of znfl1 in zebrafish genome and all the paralogues share highly identical protein sequences and cDNA sequences. When znfl1s are knocked down by using morpholino to inhibit their translations or dCas9-Eve to inhibit their transcriptions, the zebrafish gastrula displays reduced expression of hoxb1b, the maker gene for the posterior neuroectoderm. Further analyses reveal that diminishing znfl1s produces the decreased expressions of pou5f3 whereas overexpression of pou5f3 effectively rescues the reduced expression of hoxb1b in the posterior neuroectoderm. Additionally, knocking down znfl1s causes the reduced expression of sall4, a direct regulator of pou5f3, in the posterior neuroectoderm and overexpression of sall4 rescues the expression of pou5f3 in znfl1s knockdown embryos. On the other hand, knocking down either pou5f3 or sall4 does not affect the expressions of znfl1s Taken together, our results demonstrate that zebrafish znfl1s control the expression of hoxb1b in the posterior neuroectoderm by acting upstream of pou5f3 and sall4.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection