You are here

Morpholino antisense oligo inhibits trans-splicing of pre-inositol 1,4,5-trisphosphate receptor mRNA of Trypanosoma cruzi and suppresses parasite growth and infectivity

Authors: 
Hashimoto M, Nara T, Mita T, Mikoshiba K
Citation: 
Parasit Internat. 2015;[Epub ahead of print] doi:10.1016/j.parint.2015.12.001
Abstract: 
Morpholino antisense oligos (MAOs) are used to investigate physiological gene function by inhibiting gene translation or construction of specific alternative splicing variants by blocking cis-splicing. MAOs are attractive drug candidates for viral- and bacterial-infectious disease therapy because of properties such as in vivo stability and specificity to target genes. Recently, we showed that phosphorothioate antisense oligos against Trypanosoma cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R) mRNA inhibit the parasite host cell infection. In the present study, we identified the spliced leader (SL) acceptor of pre-TcIP3R mRNA and synthesized MAO, which inhibited trans-splicing of the transcript (MAO-1). MAO-1 was found to inhibit the addition of SL-RNA to pre-TcIP3R mRNA by real-time RT-PCR analysis. Treatment of the parasites with MAO-1 significantly impaired the growth and infectivity into host cells. These results indicate that MAO-1 is a potential novel drug for Chagas disease and that MAOs inhibiting trans-splicing can be used to investigate the physiology of trypanosomal genes leading to the development of novel drugs.
Epub: 
Yes
Organism or Cell Type: 
Trypanosoma cruzi