You are here

A critical role for STIM1 in filopodial calcium entry and axon guidance

Authors: 
Shim S, Zheng JQ, Ming GL
Citation: 
Mol Brain. 2013 Dec 1;6:51. doi: 10.1186/1756-6606-6-51
Abstract: 
BACKGROUND: Stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, regulates store-operated Ca2+ entry (SOCE) that is essential for Ca2+ homeostasis in many types of cells. However, if and how STIM1 and SOCE function in nerve growth cones during axon guidance remains to be elucidated. RESULTS: We report that STIM1 and transient receptor potential channel 1 (TRPC1)-dependent SOCE operates in Xenopus spinal growth cones to regulate Ca2+ signaling and guidance responses. We found that STIM1 works together with TRPC1 to mediate SOCE within growth cones and filopodia. In particular, STIM1/TRPC1-dependent SOCE was found to mediate oscillatory filopodial Ca2+ transients in the growth cone. Disruption of STIM1 function abolished filopodial Ca2+ transients and impaired Ca2+-dependent attractive responses of Xenopus growth cones to netrin-1. Finally, interference with STIM1 function was found to disrupt midline axon guidance of commissural interneurons in the developing Xenopus spinal cord in vivo. CONCLUSIONS: Our data demonstrate that STIM1/TRPC1-dependent SOCE plays an essential role in generating spatiotemporal Ca2+ signals that mediate guidance responses of nerve growth cones.
Epub: 
Not Epub
Organism or Cell Type: 
Xenopus
Delivery Method: 
microinjection