You are here

Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges

Authors: 
Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, Parra M, Liang TY, Stark TJ, Gehman LT, Hoon S, Massirer KB, Pratt GA, Black DL, Gray JW, Conboy JG, Yeo GW
Citation: 
Nat Struct Mol Biol. 2013 Nov 10. doi: 10.1038/nsmb.2699. [Epub ahead of print]
Abstract: 
Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins.
Epub: 
Yes
Organism or Cell Type: 
mouse, cell culture: HS578T cells
Delivery Method: 
Vivo-Morpholino in vivo, Endo-Porter in culture