You are here

Dominant-negative C/ebpα and polycomb group protein Bmi1 extend short-lived hematopoietic stem/progenitor cell life span and induce lethal dyserythropoiesis

Authors: 
Zhou T, Wang L, Zhu KY, Dong M, Xu PF, Chen Y, Chen SJ, Chen Z, Deng M, Liu TX
Citation: 
Blood. 2011;118:3842-3852 doi:10.1182/blood-2010-12-327908
Abstract: 
The primitive hematopoietic stem/progenitor cells (HSPCs) during embryonic hematopoiesis are thought to be short-lived (SL) with limited self-renewal potential. The fate and consequence of these short-lived HSPCs, once reprogrammed into “long-lived” in a living animal body, remain unknown. Here we show that targeted expression of a dominant-negative C/ebpα (C/ebpαDN) in the primitive SL-HSPCs during zebrafish embryogenesis extends their life span, allowing them to survive to later developmental stage to colonize the definitive hematopoietic sites, where they undergo a proliferative expansion followed by erythropoietic dysplasia and embryonic lethality because of circulation congestion. Mechanistically, C/ebpαDN binds to a conserved C/EBP-binding motif in the promoter region of bmi1 gene, associated with a specific induction of bmi1 transcription in the transgenic embryos expressing C/ebpαDN. Targeted expression of Bmi1 in the SL-HSPCs recapitulates nearly all aberrant phenotypes induced by C/ebpαDN, whereas knockdown of bmi1 largely rescues these abnormalities. The results indicate that Bmi1 acts immediately downstream of C/ebpαDN to regulate the survival and self-renewal of HSPCs and contribute to the erythropoietic dysplasia.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection