You are here

Comparison of Several Linear Fluorophore- and Quencher-Conjugated Oligomer Duplexes for Stability, Fluorescence Quenching, and Kinetics in Vitro and in Vivo in Mice

Authors: 
Zhang S, Liu G, Liu X, Yin D, Dou S, He J, Rusckowski M, Hnatowich DJ
Citation: 
Bioconjug Chem. 2007 May 19; [Epub ahead of print]
Abstract: 
A useful property of optical imaging is the potential to modulate the detectable signal to improve target/nontarget ratios. When administered as a dimer of a fluorophore- and a quencher-conjugated duplex arranged to inhibit fluorescence but designed to dissociate only in the presence of its target, the fluorescence signal should in principle appear only in the target. This laboratory has demonstrated the feasibility of this approach by using a duplex consisting of a linear oligomer conjugated with Cy5.5 (emitter) hybridized to another linear oligomer conjugated with Iowa Black (quencher) in a pretargeting optical study. Now eight duplexes consisting of combinations of 18 mer linear phosphodiester (PO) and phosphorothioate (PS) DNAs and phosphorodiamidate morpholinos (MORFs) conjugated with Cy5.5 (emitter) and Iowa Black (quencher) were variously screened for in vitro duplex stability. The MORF/PO duplex was selected for further study based on evidence of stability in 37 degrees C serum. Simultaneously, the kinetics of quenching were investigated in vitro and in vivo in mice. Thereafter, mice were implanted in one thigh with MORF/PO Cy 5.5 microspheres and the complementary PS Iowa Black administered iv to measure the extent and kinetics of duplex formation in the target. While all duplexes were stable in buffer, only the MORF/PO duplexes and possibly all PS containing duplexes were stable in 37 degrees C serum for at least 4 h. The kinetics of quenching were found to be rapid in vitro, with a 80-90% decrease in Cy5.5 fluorescence immediately following formation of a PS/PS homoduplex, and in vivo, with a 27 to 38% decrease in target thigh/nontarget ratio within 1 h following administration of the complementary PS Iowa Black complementary DNA but not the random control DNA to mice implanted with MORF/PO Cy5.5 microspheres. This investigation has provided additional evidence that Cy5.5 may be efficiently and rapidly quenched by Iowa Black when both are conjugated to complementary oligomers and that the resulting inhibition of fluorescence is sufficiently persistent for imaging.
Organism or Cell Type: 
mice
Delivery Method: 
microsphere implantation and injection