You are here

E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1

Authors: 
Weijts BGMW, Bakker WJ, Cornelissen PWA, Liang KH, Schaftenaar FH, Westendorp B, de Wolf CACMT, Paciejewska M, Scheele CLGJ, Kent L, Leone G, Schulte-Merker S, de Bruin A
Citation: 
EMBO. 2012;[Epub ahead of print] doi:/10.1038/emboj.2012.231
Abstract: 
The E2F family of transcription factors plays an important role in controlling cell-cycle progression. While this is their best-known function, we report here novel functions for the newest members of the E2F family, E2F7 and E2F8 (E2F7/8). We show that simultaneous deletion of E2F7/8 in zebrafish and mice leads to severe vascular defects during embryonic development. Using a panel of transgenic zebrafish with fluorescent-labelled blood vessels, we demonstrate that E2F7/8 are essential for proper formation of blood vessels. Despite their classification as transcriptional repressors, we provide evidence for a molecular mechanism through which E2F7/8 activate the transcription of the vascular endothelial growth factor A (VEGFA), a key factor in guiding angiogenesis. We show that E2F7/8 directly bind and stimulate the VEGFA promoter independent of canonical E2F binding elements. Instead, E2F7/8 form a transcriptional complex with the hypoxia inducible factor 1 (HIF1) to stimulate VEGFA promoter activity. These results uncover an unexpected link between E2F7/8 and the HIF1-VEGFA pathway providing a molecular mechanism by which E2F7/8 control angiogenesis.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection