You are here

Identification and mechanism of regulation of the zebrafish dorsal determinant

Authors: 
Lu FI, Thisse C, Thisse B
Citation: 
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15876-80. Epub 2011 Sep 12
Abstract: 
In vertebrates, the animal-vegetal axis is determined during oogenesis and at ovulation, the egg is radially symmetric. In anamniotes, following fertilization, a microtubule-dependent movement leads to the displacement of maternal dorsal determinants from the vegetal pole to the future dorsal side of the embryo, providing the initial breaking of radial symmetry [Weaver C, Kimelman D (2004) Development 131:3491-3499]. These dorsal determinants induce β-catenin nuclear translocation in dorsal cells of the blastula. Previous work in amphibians has shown that secreted Wnt11/5a complexes, regulated by the Wnt antagonist Dkk-1, are required for the initiation of embryonic axis formation [Cha et al. (2009) Curr Biol 29:1573-1580]. In the current study, we determined that the vegetal maternal dorsal determinant in fish is not the Wnt11/5a complex but the canonical Wnt, Wnt8a. Translation of this mRNA and secretion of the Wnt8a protein result in a dorsal-to-ventral gradient of Wnt stimulation, extending across the entire embryo. This gradient is counterbalanced by two Wnt inhibitors, Sfrp1a and Frzb. These proteins are essential to restrict the activation of the canonical Wnt pathway to the dorsal marginal blastomeres by defining the domain where the Wnt8a activity gradient is above the threshold value necessary for triggering the canonical β-catenin pathway. In summary, this study establishes that the zebrafish maternal dorsal determinant, Wnt8a, is required to localize the primary dorsal center, and that the extent of this domain is defined by the activity of two maternally provided Wnt antagonists, Sfrp1a and Frzb.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection