You are here

Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry

Authors: 
Lin X, Xu X
Citation: 
Development. 2009 Jan;136(2):207-17
Abstract: 
The Wnt/beta-catenin pathway exhibits distinct and developmental stage-specific roles during cardiogenesis. However, little is known about the molecular mechanisms of Wnt/beta-catenin signaling in the establishment of cardiac left-right (LR) asymmetry. Using zebrafish as an animal model, we show here that Wnt/beta-catenin signaling is differentially required in cardiac LR patterning. At an early stage, during asymmetric signal generation, Wnt/beta-catenin signaling is necessary for Kupffer's vesicle development and for the regulation of both heart and visceral laterality. At a later stage, during asymmetric signal propagation, excessive Wnt/beta-catenin signaling inhibits the transmission of asymmetric cues from the lateral plate mesoderm (LPM) to the cardiac field but not to the developing gut; as such, it only regulates heart laterality. Molecular analysis identifies Gata4 as the downstream target of Wnt/beta-catenin signaling in the cardiac field that responds to the Wnt/beta-catenin signaling and regulates the competence of the heart field to express left-sided genes. In summary, our results reveal a previously unexpected role of Wnt-Gata4 signaling in the control of asymmetric signal propagation from the LPM to the cardiac field.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection