You are here

Zinc finger protein too few controls the development of monoaminergic neurons

Authors: 
Levkowitz G, Zeller J, Sirotkin HI, French D, Schilbach S, Hashimoto H, Hibi M, Talbot WS, Rosenthal A
Citation: 
Nat Neurosci. 2003 Jan;6(1):28-33
Abstract: 
The mechanism controlling the development of dopaminergic (DA) and serotonergic (5HT) neurons in vertebrates is not well understood. Here we characterized a zebrafish mutant--too few (tof)--that develops hindbrain 5HT and noradrenergic neurons, but does not develop hypothalamic DA and 5HT neurons. tof encodes a forebrain-specific zinc finger transcription repressor that is homologous to the mammalian Fezl (forebrain embryonic zinc finger-like protein). Mosaic and co-staining analyses showed that fezl was not expressed in DA or 5HT neurons and instead controlled development of these neurons non-cell-autonomously. Both the eh1-related repressor motif and the second zinc finger domain were necessary for tof function. Our results indicate that tof/fezl is a key component in regulating the development of monoaminergic neurons in the vertebrate brain.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection