You are here

Zebrafish in-vivo study reveals deleterious activity of human TBC1D24 genetic variants linked with autosomal dominant hearing loss

Authors: 
Sarosiak A, Jędrychowska J, Oziębło D, Gan NS, Bałdyga N, Leja ML, Węgierski T, Cruz IA, Raible DW, Skarżyński H, Tylzanowski P, Korzh V, Ołdak M
Citation: 
Biochim Biophys Acta Mol Basis Dis. 2024 Nov 23;1871(2):167598. doi: 10.1016/j.bbadis.2024.167598. Epub ahead of print. PMID: 39586506
Abstract: 
Hearing loss is a common sensory impairment with a heterogeneous genetic etiology. Genetic variants in the TBC1D24 gene have recently emerged as an important cause of the non-syndromic autosomal dominant hearing loss (ADHL). However, the molecular mechanism behind the TBC1D24-associated ADHL is unknown. Using a zebrafish model, we investigated involvement of TBC1D24 in hearing and the functional effects of the associated ADHL-causing genetic variants. We show that the morpholino-mediated knock-down of Tbc1d24 resulted in defective ear kinocilia structure and reduced locomotor activity of the embryos. The observed phenotypes were rescued by a wild-type TBC1D24 mRNA but not by a mutant mRNA carrying the ADHL-causing variant c.553G>A (p.Asp185Asn), supporting its pathogenic potential. CRISPR-Cas9-mediated knock-out of tbc1d24 led to mechanosensory deficiency of lateral line neuromasts. Overexpression of TBC1D24 mRNA resulted in developmental abnormalities associated with ciliary dysfunction and mesendodermal mispatterning. We observed that the ADHL-causing TBC1D24 variants: c.553G>A (p.Asp185Asn); c.1460A>T (p.His487Leu), c.1461C>G (p.His487Gln) or a novel variant c.905T>G (p.Leu302Arg) alleviated the effect of overexpression, indicating that these variants disrupt the TBC1D24 function. Furthermore, the zebrafish phenotypes correspond to the severity of ADHL. Specific changes in ear structures upon TBC1D24 overexpression further highlighted its tissue-specific role in ciliary function and inner ear development. Our findings provide functional evidence for the pathogenic potential of the ADHL-causing TBC1D24 variants and lead to new insights into the function of TBC1D24 in cilia morphogenesis.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection