You are here

The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity

Authors: 
Vonica A, Gumbiner BM
Citation: 
Dev Biol. 2007 Dec 1;312(1):90-102. Epub 2007 Oct 2
Abstract: 
In Xenopus embryos, the dorso-ventral and antero-posterior axes are established by the Spemann-Mangold organizer. According to the prevalent model of early development, the organizer is induced by the dorsalizing Nieuwkoop signal, which is secreted by the Nieuwkoop center. Formation of the center requires the maternal Wnt pathway, which is active on the dorsal side of embryos. Nevertheless, the molecular nature of the Nieuwkoop signal remains unclear. Since the Nieuwkoop center and the organizer both produce dorsalizing signals in vitro, we asked if they might share molecular components. We find that vegetal explants, the source of Nieuwkoop signal in recombination assays, express a number of organizer genes. The product of one of these genes, chordin, is required for signaling, suggesting that the organizer and the center share at least some molecular components. Furthermore, experiments with whole embryos show that maternal Wnt activity is required in the organizer just as it is needed in the Nieuwkoop center in vitro. We conclude that the maternal Wnt pathway generates the Nieuwkoop center in vitro and the organizer in vivo by activating a common set of genes, without the need of an intermediary signaling step.
Epub: 
Not Epub
Organism or Cell Type: 
Xenopus laevis
Delivery Method: 
microinjection