You are here

VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration

Authors: 
Williams BB, Cantrell VA, Mundell NA, Bennett AC, Quick RE, Jessen JR
Citation: 
J Cell Sci. 2012 May 1;125(Pt 9):2141-7. doi: 10.1242/jcs.097964. Epub 2012 Feb 22
Abstract: 
Planar cell polarity (PCP) describes the polarized orientation of cells within the plane of a tissue. Unlike epithelial PCP, the mechanisms underlying PCP signaling in migrating cells remain undefined. Here, the establishment of PCP must be coordinated with dynamic changes in cell adhesion and extracellular matrix (ECM) organization. During gastrulation, the membrane type-1 matrix metalloproteinase (MT1-MMP or MMP14) is required for PCP and convergence and extension cell movements. We report that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell-surface availability of MMP14 in manner that is dependent on focal adhesion kinase. We demonstrate that zebrafish trilobite/vangl2 mutant embryos exhibit increased Mmp14 activity and decreased ECM. Furthermore, in vivo knockdown of Mmp14 partially rescues the Vangl2 loss-of-function convergence and extension phenotype. This study identifies a mechanism linking VANGL2 with MMP14 trafficking and suggests that establishment of PCP in migrating gastrula cells requires regulated proteolytic degradation or remodeling of the ECM. Our findings implicate matrix metalloproteinases as downstream effectors of PCP and suggest a broadly applicable mechanism whereby VANGL2 affects diverse morphogenetic processes.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection