You are here

Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis

Authors: 
Chaytow H, Carroll E, Gordon D, Huang YT, van der Hoorn D, Smith HL, Becker T, Becker CG, Faller KME, Talbot K, Gillingwater TH
Citation: 
EBioMedicine. 2022 Aug 2:104202. doi: 10.1016/j.ebiom.2022.104202. Online ahead of print
Abstract: 
Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with heterogeneous aetiology and a complex genetic background. Effective therapies are therefore likely to act on convergent pathways such as dysregulated energy metabolism, linked to multiple neurodegenerative diseases including ALS. Methods: Activity of the glycolysis enzyme phosphoglycerate kinase 1 (PGK1) was increased genetically or pharmacologically using terazosin in zebrafish, mouse and ESC-derived motor neuron models of ALS. Multiple disease phenotypes were assessed to determine the therapeutic potential of this approach, including axon growth and motor behaviour, survival and cell death following oxidative stress. Findings: We have found that targeting a single bioenergetic protein, PGK1, modulates motor neuron vulnerability in vivo. In zebrafish models of ALS, overexpression of PGK1 rescued motor axon phenotypes and improved motor behaviour. Treatment with terazosin, an FDA-approved compound with a known non-canonical action of increasing PGK1 activity, also improved these phenotypes. Terazosin treatment extended survival, improved motor phenotypes and increased motor neuron number in Thy1-hTDP-43 mice. In ESC-derived motor neurons expressing TDP-43M337V, terazosin protected against oxidative stress-induced cell death and increased basal glycolysis rates, while rescuing stress granule assembly. Interpretation: Our data demonstrate that terazosin protects motor neurons via multiple pathways, including upregulating glycolysis and rescuing stress granule formation. Repurposing terazosin therefore has the potential to increase the limited therapeutic options across all forms of ALS, irrespective of disease cause.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection