Citation:
Nucleic Acid Ther. 2025 Feb 7. doi: 10.1089/nat.2024.0049. Epub ahead of print. PMID: 39916530
Abstract:
Exon skipping with antisense oligonucleotides (ASOs) can correct disease-causing mutations of Duchenne muscular dystrophy (DMD) through RNA-targeted splice correction. This correction restores the reading frame and supports expression of near full-length dystrophin. First-generation exon 51-skipping ASOs targeted the same binding site, with limited clinical efficacy. We characterized a novel binding site within exon 51 that induced highly efficient exon skipping. A precursor ASO (AON-C12) and clinical ASO (BMN 351) were designed using 2'-O-methyl-modified phosphorothioate (2'OMePS) RNA and locked nucleic acids. hDMDdel52/mdx mice were given AON-C12 or BMN 351 for 13 weeks and evaluated for molecular and phenotypic correction of dystrophin deficiency. BMN 351 treatment induced durable, dose-dependent levels of exon skipping and dystrophin production in all muscles evaluated. In the heart, 8 weeks after the last BMN 351 dose at 18 mg/kg, exon-skipped transcripts remained at 44.3% of total, and dystrophin levels were 21.8% of wild type. BMN 351 reached higher tissue concentrations and percent exon skipping in the heart than a clinically relevant peptide-conjugated phosphorodiamidate morpholino oligomer comparator. BMN 351 also improved gait scores and clinical and anatomical muscle pathology parameters compared with vehicle-treated hDMDdel52/mdx mice. The pharmacologic activity and safety of BMN 351 warrant further nonclinical and clinical development.
Epub:
Not Epub
Link to Publication:
https://www.liebertpub.com/doi/10.1089/nat.2024.0049
Organism or Cell Type:
hDMDdel52/mdx mice
Delivery Method:
peptide-linked or bare oligo intravenous (i.v.) injection