You are here

Targeting a Novel Site in Exon 51 with Antisense Oligonucleotides Induces Enhanced Exon Skipping in a Mouse Model of Duchenne Muscular Dystrophy

Authors: 
Oppeneer T, Qi Y, Henshaw J, Larimore K, Melton A, Puoliväli J, Carter C, Fant P, Brennan S, Wetzel LA, Sigg MA, Crawford BE, Magat J, Froelich S, Woloszynek JC, O'Neill CA
Citation: 
Nucleic Acid Ther. 2025 Feb 7. doi: 10.1089/nat.2024.0049. Epub ahead of print. PMID: 39916530
Abstract: 
Exon skipping with antisense oligonucleotides (ASOs) can correct disease-causing mutations of Duchenne muscular dystrophy (DMD) through RNA-targeted splice correction. This correction restores the reading frame and supports expression of near full-length dystrophin. First-generation exon 51-skipping ASOs targeted the same binding site, with limited clinical efficacy. We characterized a novel binding site within exon 51 that induced highly efficient exon skipping. A precursor ASO (AON-C12) and clinical ASO (BMN 351) were designed using 2'-O-methyl-modified phosphorothioate (2'OMePS) RNA and locked nucleic acids. hDMDdel52/mdx mice were given AON-C12 or BMN 351 for 13 weeks and evaluated for molecular and phenotypic correction of dystrophin deficiency. BMN 351 treatment induced durable, dose-dependent levels of exon skipping and dystrophin production in all muscles evaluated. In the heart, 8 weeks after the last BMN 351 dose at 18 mg/kg, exon-skipped transcripts remained at 44.3% of total, and dystrophin levels were 21.8% of wild type. BMN 351 reached higher tissue concentrations and percent exon skipping in the heart than a clinically relevant peptide-conjugated phosphorodiamidate morpholino oligomer comparator. BMN 351 also improved gait scores and clinical and anatomical muscle pathology parameters compared with vehicle-treated hDMDdel52/mdx mice. The pharmacologic activity and safety of BMN 351 warrant further nonclinical and clinical development.
Epub: 
Not Epub
Organism or Cell Type: 
hDMDdel52/mdx mice
Delivery Method: 
peptide-linked or bare oligo intravenous (i.v.) injection