Citation:
Mol Cells. 2007 Aug 31;24(1):139-47
Abstract:
Although transforming growth factors (TGFs) are implicated in the process of endochondral ossification, which is initiated by the differentiation of mesenchymal cells into chondrocytes, it is not clear how TGF-beta 3 regulates the chondrogenic differentiation of limb bud mesenchymal cells. Here, differential display polymerase chain reaction (DD-PCR) screening and RT-PCR analysis revealed that transcripts of A Disintegrin And Metalloprotease 10 (ADAM 10) decreased during the chondro-inhibitory action of TGF-beta 3 on cultured chick leg bud mesenchymal cells. Electroporation of ADAM 10 morpholino antisense oligonucleotides inhibited the ectodomain shedding of delta-1, and cell proliferation and subsequent precartilage condensation, in a manner similar to that caused by TGF-beta3. The suppression of mesenchymal cell proliferation induced by TGF-beta 3 and ADAM 10 morpholino antisense oligonucleotides was reversed by activation of ADAM 10 with phorbol 12-myristate 13-acetate (PMA) or knockdown of Notch-1 with siRNA. Collectively, these data indicate that, in cultured chick leg bud mesenchyme cells, TGF-beta 3 downregulates ADAM 10 and inhibits cell proliferation and subsequent precartilage condensation by inhibiting the ectodomain shedding of delta-1, and that this results in the activation of Notch signaling.
Organism or Cell Type:
cell culture: chick leg bud mesenchyme
Delivery Method:
Electroporation