You are here

Segmental assembly of fibronectin matrix requires rap1b and integrin α5

Authors: 
Lackner S, Schwendinger-Schreck J, Jülich D, Holley SA
Citation: 
Dev Dyn. 2012 Nov 29. doi: 10.1002/dvdy.23909. [Epub ahead of print]
Abstract: 
BACKGROUND: During segmentation of the zebrafish embryo, inside-out signaling activates Integrin α5, which is necessary for somite border morphogenesis. The direct activator of Integrin α5 during this process is unknown. One candidate is Rap1b, a small monomeric GTPase implicated in Integrin activation in the immune system. RESULTS: Knockdown of rap1b, or overexpression of a dominant negative rap1b, causes a mild axis elongation defect in zebrafish. However, disruption of rap1b function in integrin α5(-/-) mutants results in a strong reduction in Fibronectin (FN) matrix assembly in the paraxial mesoderm and a failure in somite border morphogenesis along the entire anterior-posterior axis. Somite patterning appears unaffected, as her1 oscillations are maintained in single and double morphants/mutants, but somite polarity is gradually lost in itgα5(-/-) ; rap1b MO embryos. CONCLUSIONS: In itgα5(-/-) mutants, rap1b is required for proper somite border morphogenesis in zebrafish. The loss of somite borders is not a result of aberrant segmental patterning. Rather, somite boundary formation initiates but is not completed, due to the failure to assemble FN matrix along the nascent boundary. We propose a model in which Rap1b activates Integrin/Fibronectin receptors as part of an \"inside-out\" signaling pathway that promotes Integrin binding to FN, FN matrix assembly and subsequent stabilization of morphological somite boundaries.
Organism or Cell Type: 
zebrafish