Citation:
J Neurosci. 2020;[Epub ahead of print] doi:10.1523/JNEUROSCI.2666-19.2020
Abstract:
Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal RGD domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αβ subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates β3-integrins to induce t-SP. Here we determined if β3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of p-FAK and p-cofilin in dendrites of reinstated animals compared to extinguished and yoked saline, and the phosphorylation of FAK and cofilin depended on β3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-MSNs, but increased p-cofilin was observed only in D1-MSNs. These data indicate that β3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues
Epub:
Yes
Link to Publication:
https://www.jneurosci.org/content/early/2020/10/12/JNEUROSCI.2666-19.2020
Organism or Cell Type:
Rat
Delivery Method:
catheter to brain nucleus accumbans core (NAcore)