Citation:
J Pers Med. 2022 Jul 23;12(8):1199. doi: 10.3390/jpm12081199
Abstract:
Mucopolysaccharidosis type I (MPS I) is an inherited autosomal recessive disease resulting from mutation of the α-l-Iduronidase (IDUA) gene. New unknown mutated nucleotides of idua have increasingly been discovered in newborn screening, and remain to be elucidated. In this study, we found that the z-Idua enzymatic activity of zebrafish idua-knockdown embryos was reduced, resulting in the accumulation of undegradable metabolite of heparin sulfate, as well as increased mortality and defective phenotypes similar to some symptoms of human MPS I. After microinjecting mutated z-idua-L346R, -T364M, -E398-deleted, and -E540-frameshifted mRNAs, corresponding to mutated human IDUA associated with MPS I, into zebrafish embryos, no increase in z-Idua enzymatic activity, except of z-idua-E540-frameshift-injected embryos, was noted compared with endogenous z-Idua of untreated embryos. Defective phenotypes were observed in the z-idua-L346R-injected embryos, suggesting that failed enzymatic activity of mutated z-Idua-L346R might have a dominant negative effect on endogenous z-Idua function. However, defective phenotypes were not observed in the z-idua-E540-frameshifted-mRNA-injected embryos, which provided partial enzymatic activity. Based on these results, we suggest that the z-Idua enzyme activity assay combined with phenotypic observation of mutated-idua-injected zebrafish embryos could serve as an alternative platform for a preliminary assessment of mutated idua not yet characterized for their role in MPS I.
Epub:
Not Epub
Link to Publication:
https://www.mdpi.com/2075-4426/12/8/1199/htm
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection