You are here

Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling

Authors: 
Morooka N, Futaki S, Sato-Nishiuchi R, Nishino M, Totani Y, Shimono C, Nakano I, Nakajima H, Mochizuki N, Sekiguchi K
Citation: 
Circul Res. 2017;[Epub ahead of print] doi:10.1161/CIRCRESAHA.116.308825
Abstract: 
Rationale: Lymphatic vasculature constitutes a second vascular system, essential for immune surveillance and tissue fluid homeostasis. Maturation of the hierarchical vascular structure, with a highly-branched network of capillaries and ducts, is crucial for its function. Environmental cues mediate the remodeling process, but the mechanism that underlies this process is largely unknown. Objective: Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin α9β1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development. Methods and Results: We generated Polydom-deficient mice. Polydom-/- mice showed severe edema and died immediately after birth because of respiratory failure. We found that, although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom-/- embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2, a transcription factor involved in lymphatic remodeling, was decreased in PPolydom-/- mice. Polydom bound to the lymphangiogenic factor Angiopoietin-2, which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for Angiopoietins were also decreased in Polydom-/- mice. Conclusions:: Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Angiopoietin-2 and Tie1/Tie2 receptor system.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection