You are here

Phosphorodiamidate Morpholino Oligomers (PMOs) suppress mutant huntingtin expression and attenuate neurotoxicity

Authors: 
Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li P, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD
Citation: 
Hum Mol Genet. 2014;[Epub ahead of print] doi:10.1093/hmg/ddu349
Abstract: 
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant huntingtin. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce expression of the mutant huntingtin protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the huntingtin CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of HdhQ7/Q150 knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
Epub: 
Yes
Organism or Cell Type: 
mice, cell culture: patient fibroblasts