You are here

PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation

Authors: 
Damm EW, Winklbauer R
Citation: 
Development. 2011 Feb;138(3):565-75
Abstract: 
Radial intercalation is a common, yet poorly understood, morphogenetic process in the developing embryo. By analyzing cell rearrangement in the prechordal mesoderm during Xenopus gastrulation, we have identified a mechanism for radial intercalation. It involves cell orientation in response to a long-range signal mediated by platelet-derived growth factor (PDGF-A) and directional intercellular migration. When PDGF-A signaling is inhibited, prechordal mesoderm cells fail to orient towards the ectoderm, the endogenous source of PDGF-A, and no longer migrate towards it. Consequently, the prechordal mesoderm fails to spread during gastrulation. Orientation and directional migration can be rescued specifically by the expression of a short splicing isoform of PDGF-A, but not by a long matrix-binding isoform, consistent with a requirement for long-range signaling.
Organism or Cell Type: 
Xenopus