You are here

The nucleus measures shape deformation for cellular proprioception and regulates adaptive morphodynamics

Authors: 
Venturini V, Pezzano F, Castro FC, Häkkinen H-M, Jiménez-Delgado S, Colomer-Rosell M, Sánchez MM, Tolosa-Ramon Q, Paz-López S, Valverde MA, Loza-Alvarez P, Krieg M, Wieser S, Ruprecht V
Citation: 
bioRxiv. 2019;[preprint] doi:10.1101/865949
Abstract: 
The physical microenvironment regulates cell behavior during tissue development and homeostasis. How single cells decode information about their geometrical shape under mechanical stress and physical space constraints within their local environment remains largely unknown. Here we show that the nucleus, the biggest cellular organelle, functions as a non-dissipative cellular shape deformation gauge that enables cells to continuously measure shape variations on the time scale of seconds. Inner nuclear membrane unfolding together with the relative spatial intracellular positioning of the nucleus provides physical information on the amplitude and type of cellular shape deformation. This adaptively activates a calcium-dependent mechano-transduction pathway, controlling the level of actomyosin contractility and migration plasticity. Our data support that the nucleus establishes a functional module for cellular proprioception that enables cells to sense shape variations for adapting cellular behaviour to their microenvironment.
Epub: 
Not Epub
Organism or Cell Type: 
cell culture: zebrafish embryonic cells