You are here

The macrophage as a Trojan horse for antisense oligonucleotide delivery

Authors: 
Novak JS, Jaiswal JK, Partridge TA
Citation: 
Expert Opin Ther Targets. 2018 Jun 4. doi: 10.1080/14728222.2018.1482279. [Epub ahead of print]
Abstract: 
The gateway to the promised land of gene therapy has been obstructed by the problem of accurate and efficient delivery of therapeutic agents to their target sites. This is true both of constructs designed to directly express proteins of interest, and of constructs or agents aimed at modifying the expression of endogenous genes. It is recognized as a major impediment to the effective application of genetic therapies currently or incipiently in clinical trial. Our recent study has examined the mechanism underlying delivery of therapeutic antisense oligonucleotides (ASO) for treating the devastating muscle disease Duchenne muscular dystrophy [1]. Working to understand the mode of ASO delivery in DMD, we discovered that inflammatory cells act as a depot that locally stores the intravenously administered ASO. This local depot of ASO then becomes available to the muscle fibres by way of satellite cells that deliver their cargo by fusion with damaged fibres during muscle repair. This finding points to a potentially novel strategy for systemic ASO delivery, involving the use of the inflammatory cell as a Trojan horse. Such an approach would have the benefit not only of enhancing tissue-specific delivery of ASO, but also of reducing the impact of their rapid clearance from the circulation. Here, we discuss the issues surrounding ASO-mediated exon skipping efficacy for DMD, and outline research aimed at improving targeted ASO delivery.
Epub: 
Yes