You are here

Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects

Authors: 
Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M, Southall N, Patnaik S, Marugan JJ, Zheng W, Austin CP, Disney MD, Miller BL, Thornton CA
Citation: 
Nucleic Acids Res. 2014 May 5. [Epub ahead of print]
Abstract: 
Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUGexp). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUGexp binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1-(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUGexp RNA in nuclear foci, owing to reduced turnover of the CUGexp transcript. By comparison, the monomer did not induce CUGexp accumulation in cells and was more effective at rescuing a CUGexp-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.
Epub: 
Not Epub
Organism or Cell Type: 
mouse, cell culture:C2C12 myogenic cells
Delivery Method: 
injection (mouse), electroporation (C2C12 cells)