You are here

Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction

Authors: 
Piacentino ML, Bronner ME
Citation: 
PLoS Biol. 2018 Jun 27;16(6):e2004425. doi: 10.1371/journal.pbio.2004425. eCollection 2018 Jun
Abstract: 
The neural crest is induced at the neural plate border during gastrulation by combined bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Wnt signaling. While intermediate BMP levels are critical for this induction, secreted BMP inhibitors are largely absent from the neural plate border. Here, we propose a morphogen model in which intracellular attenuation of BMP signaling sets the required intermediate levels to maintain neural crest induction. We show that the scaffold protein casein kinase interacting protein 1 (CKIP-1) and ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) are coexpressed with BMP4 at the chick neural plate border. Knockdown of CKIP-1 during a critical period between gastrulation and neurulation causes neural crest loss. Consistent with specific BMP modulation, CKIP-1 loss suppresses phospho-Smads 1/5/8 (pSmad1/5/8) and BMP reporter output but has no effect on Wnt signaling; Smurf1 overexpression (OE) acts similarly. Epistasis experiments further show that CKIP-1 rescues Smurf1-mediated neural crest loss. The results support a model in which CKIP-1 suppresses Smurf1-mediated degradation of Smads, uncovering an intracellular mechanism for attenuation of BMP signaling to the intermediate levels required for maintenance of neural crest induction.
Epub: 
Not Epub
Organism or Cell Type: 
Gallus gallus (chick)
Delivery Method: 
injection and electroporation