You are here

Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

Authors: 
Zhang P, Yao Q, Lu L, Li Y, Chen P-J, Duan C
Citation: 
Cell Rep. 2014; doi:10.1016/j.celrep.2014.02.011
Abstract: 
Hypoxia-inducible factors (HIFs) play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.
Epub: 
Yes
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection