Citation:
bioRxiv. 2019;[preprint] doi:10.1101/805804
Abstract:
Vestigial structures are key indicators of evolutionary descent but the mechanisms underlying their development are poorly understood. This study examines vestigial eye formation in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling morph and different populations of blind cave morphs. Cavefish embryos initially develop optic primordia but vestigial eyes are formed during larval development. Multiple genetic factors are involved in cavefish eye loss but none of the mutated genes have been identified. Here we identify cystathionine ß-synthase (cbsa), which encodes the key enzyme of the transsulfuration pathway, as a mutated gene responsible for eye degeneration in multiple cavefish populations. The inactivation of cbsa affects eye development by inducing accumulation of the transsulfuration intermediate homocysteine and defects in optic vasculature, including aneurysms and eye hemorrhages, leading to oxygen deficiency. Our findings suggest that localized modifications in the circulatory system and hypoxia had important roles in the evolution of vestigial eyes in blind cavefish.
Epub:
Not Epub
Link to Publication:
https://www.biorxiv.org/content/10.1101/805804v1.full
Organism or Cell Type:
Astyanax mexicanus (cavefish)
Delivery Method:
microinjection