Citation:
Nat. Phys. (2026). https://doi.org/10.1038/s41567-025-03122-1
Abstract:
Early embryo geometry is one of the most invariant species-specific traits, yet its role in ensuring developmental reproducibility and robustness remains underexplored. Here we show that in zebrafish, the geometry of the fertilized egg—specifically its curvature and volume—serves as a critical initial condition triggering a cascade of events that influence development. The embryo geometry guides patterned asymmetric cell divisions in the blastoderm, generating radial gradients of cell volume and nucleocytoplasmic ratio. These gradients generate mitotic phase waves, with the nucleocytoplasmic ratio determining individual cell cycle periods independently of other cells. We demonstrate that reducing cell autonomy reshapes these waves, emphasizing the instructive role of geometry-derived volume patterns in setting the intrinsic period of the cell cycle oscillator. In addition to organizing cell cycles, early embryo geometry spatially patterns zygotic genome activation at the midblastula transition, a key step in establishing embryonic autonomy. Disrupting the embryo shape alters the zygotic genome activation pattern and causes ectopic germ layer specification, underscoring the developmental significance of geometry. Together, our findings reveal a symmetry-breaking function of early embryo geometry in coordinating cell cycle and transcriptional patterning.
Epub:
Not Epub
Link to Publication:
https://www.nature.com/articles/s41567-025-03122-1
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection
