You are here

A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos

Authors: 
Cheatle Jarvela AM, Yankura KA, Hinman VF
Citation: 
Development. 2016 Nov 15;143(22):4214-4223. Epub 2016 Oct 5
Abstract: 
How neural stem cells generate the correct number and type of differentiated neurons in appropriate places remains an important question. Although nervous systems are diverse across phyla, in many taxa the larva forms an anterior concentration of serotonergic neurons, or apical organ. The sea star embryo initially has a pan-neurogenic ectoderm, but the genetic mechanism that directs a subset of these cells to generate serotonergic neurons in a particular location is unresolved. We show that neurogenesis in sea star larvae begins with soxc-expressing multipotent progenitors. These give rise to restricted progenitors that express lhx2/9 soxc- and lhx2/9-expressing cells can undergo both asymmetric divisions, allowing for progression towards a particular neural fate, and symmetric proliferative divisions. We show that nested concentric domains of gene expression along the anterior-posterior (AP) axis, which are observed in a great diversity of metazoans, control neurogenesis in the sea star larva by promoting particular division modes and progression towards becoming a neuron. This work explains how spatial patterning in the ectoderm controls progression of neurogenesis in addition to providing spatial cues for neuron location. Modification to the sizes of these AP territories provides a simple mechanism to explain the diversity of neuron number among apical organs.
Epub: 
Not Epub
Organism or Cell Type: 
Patria miniata (sea star)
Delivery Method: 
microinjection