You are here

Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia

Authors: 
Kim J, Park EA, Shin MY, Park SJ
Citation: 
Microbiol Spectr. 2023 Mar 6:e0491922. doi: 10.1128/spectrum.04919-22. Online ahead of print
Abstract: 
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that control the eukaryotic cell cycle. Limited information is available on Giardia lamblia CDKs (GlCDKs), GlCDK1 and GlCDK2. After treatment with the CDK inhibitor flavopiridol-HCl (FH), division of Giardia trophozoites was transiently arrested at the G1/S phase and finally at the G2/M phase. The percentage of cells arrested during prophase or cytokinesis increased, whereas DNA synthesis was not affected by FH treatment. Morpholino-mediated depletion of GlCDK1 caused arrest at the G2/M phase, while GlCDK2 depletion resulted in an increase in the number of cells arrested at the G1/S phase and cells defective in mitosis and cytokinesis. Coimmunoprecipitation experiments with GlCDKs and the nine putative G. lamblia cyclins (Glcyclins) identified Glcyclins 3977/14488/17505 and 22394/6584 as cognate partners of GlCDK1 and GlCDK2, respectively. Morpholino-based knockdown of Glcyclin 3977 or 22394/6584 arrested cells in the G2/M phase or G1/S phase, respectively. Interestingly, GlCDK1- and Glcyclin 3977-depleted Giardia showed significant flagellar extension. Altogether, our results suggest that GlCDK1/Glcyclin 3977 plays an important role in the later stages of cell cycle control and in flagellar biogenesis. In contrast, GlCDK2 along with Glcyclin 22394 and 6584 functions from the early stages of the Giardia cell cycle. IMPORTANCE Giardia lamblia CDKs (GlCDKs) and their cognate cyclins have not yet been studied. In this study, the functional roles of GlCDK1 and GlCDK2 were distinguished using morpholino-mediated knockdown and coimmunoprecipitation. GlCDK1 with Glcyclin 3977 plays a role in flagellum formation as well as cell cycle control of G. lamblia, whereas GlCDK2 with Glcyclin 22394/6584 is involved in cell cycle control.
Epub: 
Not Epub
Organism or Cell Type: 
Giardia lamblia
Delivery Method: 
electroporation