Citation:
Mech Dev. 2003 Oct;120(10):1177-92.
Abstract:
HMGN proteins are architectural chromatin proteins that reduce the compaction of the chromatin fiber, facilitate access to nucleosomes and modulate replication and transcription processes. Here we demonstrate that in Xenopus laevis, the expression and cellular location of the HMGN proteins are developmentally regulated and that their misexpression leads to gross developmental defects in post-blastula embryos. HMGN transcripts and proteins are present throughout oogenesis; however, the proteins stored in the cytoplasm are not associated with lampbrush chromosomes, and are rapidly degraded when oocytes mature into eggs. During embryogenesis, HMGN expression is first detected in blastula stages and progresses to a tissue-specific expression reaching relative high levels in the mesodermal and neuroectodermal regions of tadpoles. Only after midblastula transition (MBT), alterations in the HMGN levels by either microinjection of recombinant proteins or by morpholino-antisense oligo treatments produced embryos with imperfectly closed blastopore, distorted body axis and showed abnormal head structures. Analyses of animal cap explants indicated that HMGN proteins are involved in the regulation of mesoderm specific genes. In addition, HMGN misexpression caused altered expression of specific genes at MBT rather than global changes of transcription rates. Our results demonstrate that proper embryonic development of Xenopus laevis requires precisely regulated levels of HMGN proteins and suggest that these nucleosomal binding proteins modulate the expression of specific genes.
Organism or Cell Type:
Xenopus laevis
Delivery Method:
Microinjection