You are here

CYP1B1 knockdown does not alter synergistic developmental toxicity of polycyclic aromatic hydrocarbons in zebrafish (Danio rerio)

Authors: 
Timme-Laragy AR, Noyes PD, Buhler DR, Di Giulio RT
Citation: 
Mar Environ Res. 2008 Jul;66(1):85-7. Epub 2008 Feb 26.
Abstract: 
Polycyclic aromatic hydrocarbons (PAHs) are contaminants increasing in the environment largely due to burning of fossil fuels. Our previous work identified a synergistic toxicity interaction in zebrafish embryos occurring when PAHs that are agonists for the aryl hydrocarbon receptor (AHR) co-occur with PAHs that are CYP1A inhibitors. This toxicity is mediated by the AHR2, and morpholino knockdown of CYP1A exacerbated toxicity. This study tested two hypotheses: (1) in the absence of functional CYP1A, metabolism of PAHs is shunted towards CYP1B1, which has been shown in mammals to produce more reactive metabolites of PAHs; alternatively, (2) CYP1B1 serves a protective role similar to CYP1A. We used a morpholino approach to knockdown CYP1B1 alone and in co-knockdown with CYP1A to determine whether we could alter deformities caused by synergistic toxicity of PAHs. CYP1B1 knockdown was not different from non-injected controls; nor were CYP1B1+CYP1A co-knockdown deformities different from CYP1A knockdown alone. These data suggest that CYP1B1 is not a significant factor in causing synergistic toxicity of PAHs, nor, in contrast to CYP1A, in providing protection.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection