You are here

Critical role of biklf in erythroid cell differentiation in zebrafish

Authors: 
Kawahara A, Dawid IB
Citation: 
Curr Biol. 2001 Sep 4;11(17):1353-7
Abstract: 
Hematopoietic cells arise from ventral mesoderm in different vertebrates, but the mechanisms through which various factors contribute to the hematopoietic processes, including erythrogenesis, remain incompletely understood. The Kruppel-like transcription factor Biklf is preferentially expressed in blood islands throughout zebrafish embryogenesis, marking the region of future erythropoiesis [1]. In this paper, we show that expression of biklf is significantly suppressed in the blood-less mutants vampire and m683 in which primitive hematopoiesis is impaired. Knockdown of biklf using morpholino-based antisense oligonucleotides (biklf-MO) led to a potent reduction in the number of circulating blood cells and deficiency in hemoglobin production. Consistently, we found that the expression of beta(e3)globin is strongly suppressed in biklf-MO-injected embryos, while gata1 expression is partly inhibited at the 10-somite stage. In addition, analysis of reporter constructs driven by the GATA1 and beta-globin promoters showed that Biklf can positively regulate both genes. These results indicate that Biklf is required for erythroid cell differentiation in zebrafish.
Organism or Cell Type: 
zebrafish
Delivery Method: 
Microinjection