You are here

Cell cycle control of wnt receptor activation

Authors: 
Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C
Citation: 
Dev Cell. 2009 Dec;17(6):788-99
Abstract: 
Low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6) are transmembrane receptors that initiate Wnt/beta-catenin signaling. Phosphorylation of PPPSP motifs in the LRP6 cytoplasmic domain is crucial for signal transduction. Using a kinome-wide RNAi screen, we show that PPPSP phosphorylation requires the Drosophila Cyclin-dependent kinase (CDK) L63. L63 and its vertebrate homolog PFTK are regulated by the membrane tethered G2/M Cyclin, Cyclin Y, which mediates binding to and phosphorylation of LRP6. As a consequence, LRP6 phosphorylation and Wnt/beta-catenin signaling are under cell cycle control and peak at G2/M phase; knockdown of the mitotic regulator CDC25/string, which results in G2/M arrest, enhances Wnt signaling in a Cyclin Y-dependent manner. In Xenopus embryos, Cyclin Y is required in vivo for LRP6 phosphorylation, maternal Wnt signaling, and Wnt-dependent anteroposterior embryonic patterning. G2/M priming of LRP6 by a Cyclin/CDK complex introduces an unexpected new layer of regulation of Wnt signaling.
Organism or Cell Type: 
Xenopus
Delivery Method: 
Microinjection