Citation:
bioRxiv. 2019;[preprint] doi:10.1101/2019.12.13.876268
Abstract:
Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, downregulation of bach2a hinders blood-vessel formation and impairs lymphatic sprouting in a vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1-overexpression enhances intratumoral blood-vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.
Epub:
Not Epub
Link to Publication:
https://www.biorxiv.org/content/10.1101/2019.12.13.876268v1
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection