Citation:
Cell Rep. 2019;28(9):2264-74. doi:10.1016/j.celrep.2019.07.087
Abstract:
Generation of neuronal types at the right time, location, and number is essential for building a functional nervous system. Significant progress has been reached in understanding the mechanisms that govern neuronal diversity. Cerebrospinal fluid-contacting neurons (CSF-cNs), an intriguing spinal cord central canal population, are produced during advanced developmental stages, simultaneous with glial and ependymal cells. It is unknown how CSF-cNs are specified after the neurogenesis-to-gliogenesis switch. Here, we identify delayed Ascl1 expression in mouse spinal progenitors during the gliogenic phase as key in CSF-cN differentiation. With fate mappings and time-controlled deletions, we demonstrate that CSF-cNs derive from Ascl1-expressing cells and that Ascl1 triggers late neurogenesis in the amniote spinal cord. Ascl1 abrogation transforms prospective CSF-cN progenitors into ependymocytes. These results demonstrate that late spinal progenitors have the potential to produce neurons and that Ascl1 initiates CSF-cN differentiation, controlling the precise neuronal and nonneuronal composition of the spinal central canal.
Epub:
Not Epub
Link to Publication:
https://www.cell.com/cell-reports/fulltext/S2211-1247(19)31003-4
Organism or Cell Type:
zebrafish
Delivery Method:
microinjection